Algumas vezes em Matemática aparecerão raizes nos denominadores, aquelas que não têm como resposta um número real. É nessa hora que devemos racionalizar o denominador. Esse método consiste em transformar o denominador irracional em um denominador racional, sem nunca trocar o valor da fração.
Em Matemática existem duas operações que podemos usar onde não se troca o valor da expressão que temos:
1) Somar zero;
2) Multiplicar por um.
Usaremos a segunda opção para a racionalização.
Então para racionalizar iremos multiplicar nossa fração que possui denominador irracional por UM (1).
Pra isso devemos lembrar duas coisas:
1) Toda fração que possui o numerador igual ao denominador tem valor UM.
2) Toda vez que multiplicamos uma raiz por outra de mesmo índice, onde o expoente do radicando fica igual ao índice da raiz, podemos "cortar a raiz" com o expoente, sobrando como resultado o próprio radicando.
Exemplo:
Então, o que iremos fazer é multiplicar nossa fração com denominador irracional por "um". Mas esse "um" será outra fração em que ao multiplicarmos pela nossa fração com denominador irracional, o denominador se torne um número racional, ou seja, na multiplicação de duas raizes "cortamos" a raíz.
Esse processo é mais fácil com raizes quadradas. As outras raizes veremos em aula.
Veja exemplos:
O principal próposito da racionalização de denominadores é que a divisão de um número, seja ele racional ou irracional, por um número irracional implica num erro grande. Já a divisão de um número, seja ele racional ou irracional, por um número racional implica num erro pequeno (ou nulo).
Na aula maiores detalhes.
Abraço
Assinar:
Postar comentários (Atom)
Nenhum comentário:
Postar um comentário
Observação: somente um membro deste blog pode postar um comentário.